

V Semester B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (F + R) (2016-17 and Onwards) CHEMISTRY

Physical Chemistry (Paper - VI)

Time: 3 Hours

Max. Marks: 70

Instructions: 1) The question paper has two Parts. Answer both the Parts.

 Draw diagrams and write chemical equation wherever necessary.

PART-A

Answer any eight of the following questions. Each question yparries two marks: (8x2=16)

- 1. Define ionic mobility.
- 2. State Kohlrausch law of independent migration of ions.
- 3. Give any two limitations of Arrhenius theory .
- 4. How is the cell constant of a given conductivity cell determined?
- The standard electrode potentials of zinc and copper electrodes in their salt solutions are – 0.76 V and +0.34 V respectively. Calculate e.m.f. of the Daniel cell.
- 6. Name a primary and secondary reference electrode.
- 7. Explain induced dipole moment with an example.
- 8. Define zero point energy of a vibrating molecule. Give its equation.
- 9. Mention any two advantages of Dropping Mercury Electrode (D.M.E.).
- State Franck-Condon principle.
- 11. Give any two applications of Raman Spectroscopy.
- 12. What is the selection rule for pure vibration and pure rotational transitions?

PART - B

Answer any nine of the following questions. Each question carries six marks: (9×6=54)

- a) Describe the principle involved in the conductometric titration of a strong acid verses strong base graphically.
 - b) The molar conductances at infinite dilution for NaCl, NH₄Cl and NaOH are 12.6×10^{-3} , 15.0×10^{-3} and 24.81×10^{-3} S.m² mol⁻¹ respectively. Calculate the $\lambda\infty$ of NH₄OH. (4+2)
- a) Explain the determination of transport number of H⁺ and Cl⁻ ions in hydrochloric acid by moving boundary method.
 - b) Write Debye-Huckel Onsanger equation and indicate the terms involved. (4+2)
- 15. a) Derive Nernst equation for the electrode potential hermodynamically.
 - b) The Standard reduction potentials of Ag⁺|Ag and Cu⁺²|Cu electrodes are 0.8 V and 0.34 V respectively. Represent the cell symbolically and calculate the emf of the cell.
 (4-
- 16. a) Explain the construction of glass electrode and represent it symbolically.
 - b) A hydrogen electrode was immersed in the solution and coupled with a colomel electrode, the emf of the cell was found to be 0.4 V. Calculate pH of the solution, given E_{Cal}⁰ = 0.2415 volts. (4+2)
- 17. a) How is the EMF of a cell experimentally determined by Pogendroff's compensation method?
 - b) Differentiate between single electrode and standard electrode potential. (4+2)
- 18. a) Derive Henderson's equation for calculating pH of an acidic buffer.
 - b) Give any two analytical applications of buffer solutions. (4+2)
- 19. a) What is Seebeck effect ? Explain why carbon dioxide has a zero dipole moment and sulphur dioxide has a positive dipole moment.
 - b) What are ferro magnetic and diamagnetic substances?

(4+2)

- 20. a) i) Write Clausius-Mossotti equation and indicate the terms involved in it.
 - ii) What are semiconductors? Give an example.
 - b) Chlorine is microwave inactive, where as hydrogen chloride is active.

(4+2)

- 21. a) Name the different types of molecular spectra. Mention the regions of the electromagnetic spectrum in which they appear.
 - b) Calculate the reduced mass of Hcl molecule. Given atomic masses of hydrogen and chlorine are 0.001 and 0.0355 respectively. $N = 6.023 \times 10^{23}$. (4+2)
- 2. a) Give any four differences between Raman Spectra and Spectra.
 - b) Calculate the number of modes of vibrations for carbondioxide and water

- 3. a) Explain in brief: Stokes and anti Stoke's lines.
 - b) State Hooke's law.

(4+2)

- a) How is rotational spectral data of a diatomic molecule used to determine the moment of inertia and bond length of the molecule?
- b) The force constant for HF molecule is 870 N/m. Calculate the fundamental vibrational frequency. Given $C = 3 \times 10^8 \text{ m.s}^{-1}$ and reduced mass of HF; $\mu = 0.1566 \times 10^{-26} \text{ kg}$. (3+3)
- a) Mention the different types of currents obtained at the Dropping Mercury Electrode (D.M.E.).
- b) Give any two applications of polarography.

(3+3)